Table of exact trigonometric functions

Since I noticed I had to keep looking some of these up, I place them here, just for reference, gathered from around the internet. Many of these formulas can be written in different ways, but I have simplified them as much as possible.

Where, ϕ=1+52=1.6180339887498948482045868, also known as the golden ratio (phi).

a sin(a) = cos(b) = sin(90-b) = cos(90-a) tan(a) = cot(b) = tan(90-b) = cot(90-a) b
deg rad deg rad
0 0 0 0 90 π/2
3 π/60 116[(223)5+5+2(1+5)(1+3)] 14[(23)(3+5)2][21025] 87 29π/30
6 π/30 18[306551] 12[10253(1+5)] 84 7π/15
9 π/20 1222+ϕ=1225+52 1+55+25 81 9π/20
12 π/15 18[10+253(1+5)] 12[3(35)2(25115)] 78 13π/30
15 π/12 624=232 23 75 5π/12
18 π/10 12ϕ=11+5=514 1525105 72 2π/5
21 7π/60 116[2(3+1)552(31)(1+5)] 14[2(2+3)(35)][22(5+5)] 69 23π/60
22.5 π/8 1222 21 67.5 3π/8
24 2π/15 18[1025+3(1+5)] 12[3(3+5)+2(25+115)] 66 11π/30
27 3π/20 12221ϕ=122552 1+5525 63 7π/20
30 π/6 12 13 60 π/3
33 11π/60 116[2(31)5+5+2(1+3)(51)] 14[2(23)(3+5)][2+2(55)] 57 19π/60
36 π/5 123ϕ=558 525 54 3π/10
39 13π/60 116[2(13)55+2(3+1)(5+1)] 14[(23)(35)2][22(5+5)] 51 17π/60
42 7π/30 18[30+655+1] 12[10+25+3(1+5)] 48 4π/15
45 π/4 12 1 45 π/4
48 4π/15 18[10+25+3(1+5)] 12[3(35)+2(25115)] 42 7π/30
51 17π/60 116[2(1+3)55+2(31)(5+1)] 14[(2+3)(35)2][2+10+25] 39 13π/60
54 3π/10 ϕ2=1+54 1525+105 36 π/5
57 19π/60 116[2(3+1)5+5+2(13)(51)] 14[2(2+3)(3+5)][22(55)] 33 11π/60
60 π/3 32 3 30 π/6
63 7π/20 122+21ϕ=122+552 1+5+525 27 3π/20
66 11π/30 18[3065+5+1] 12[1025+3(1+5)] 24 2π/15
67.5 3π/8 122+2 2+1 22.5 π/8
69 23π/60 116[2(31)55+2(3+1)(1+5)] 14[2(23)(35)][2+2(5+5)] 21 7π/60
72 2π/5 2+ϕ2=5+522 5+25 18 π/10
75 5π/12 2+32 2+3 15 π/12
78 13π/30 18[30+65+51] 12[10+25+3(1+5)] 12 π/15
81 9π/20 122+2+ϕ=122+5+52 1+5+5+25 9 π/20
84 7π/15 18[1025+3(1+5)] 12[3(3+5)+2(25+115)] 6 π/30
87 29π/30 116[(2+23)5+5+2(1+5)(1+3)] 14[(2+3)(3+5)2][2+1025] 3 π/60
90 π/2 1 0 0
deg rad sin(a) = cos(b) = sin(90-b) = cos(90-a) tan(a) = cot(b) = tan(90-b) = cot(90-a) deg rad
a b

raddegsincostan2π360010π1800102π3120123123π29010±2π57214(10+25)14(51)5+25π360123123π44512212212π940i2(13231+323)12(1+323+1323)π53614(1025)14(5+1)525π63012123133π71243(11214336+554906419331433655490641933)1243(80+14336+55490641933+1433655490641933)2π152418(15+31025)18(1+5+3065)12(3315+50+225)π822.512(22)12(2+2)21π920i4(44334+433)14(4+433+4433)π101814(51)14(10+25)15(25105)π121514(62)14(6+2)23π151218[10+253(1+5)]18[30+65+51]π1810π30618[306551]18[1025+3(1+5)]π404.51222+5+52122+2+5+52π454π603116[(223)5+5+2(1+5)(1+3)]116[(2+23)5+5+2(1+5)(1+3)]π902π180112i[cos(3)+isin(3)3cos(3)isin(3)3]

The values for angles outside the range 0-90 degrees, can be found by reducing the angle be in the correct range. Negative angles should have 360 added to them until positive. If angle ≥360, subtract multiples of 360 from it, until <360. Then, if angle ≥270, subtract from 360. If angle ≥180, subtract 180. If angle ≥90, subtract from 180.

Examples:

  • sin(-54)=sin(360-54)=sin(306)=-sin(54)
  • cos(120)=cos(180-120)=-cos(60)
  • tan(225)=tan(225-180)=tan(45)
  • tan(-225)=tan(360-225)=tan(135)=tan(180-135)=-tan(45)
  • sin(1000)=sin(1000-360*2)=sin(280)=sin(360-280)=-sin(80)

Angles between 0 and 360 will have the following signs and are measured in a counter-clockwise arc originating at the “x+” line.

FYI, here is the exact value of sin 1°, 12i[cos(3)+isin(3)3cos(3)isin(3)3], where i=1,

12(1i3)6384(51)(3+3)+3192(33)5+5+i81148[6(51)(3+3)23(33)5+5]23+12(1+i3)6384(51)(3+3)+3192(33)5+5i81148(6(51)(3+3)23(33)5+5)23

and the cos 1°,

122(i31)364(1+5)2128(51)5+5+i81[38(1+5)+216(51)5+5]23+(i3+1)364(1+5)2128(51)5+5i81[38(1+5)+216(51)5+5]23

 

Leave a Reply