The law of cosines relates the sides and angles of a triangle. \(a^2=b^2+c^2-2bc\cdot \cos\alpha \\ b^2=a^2+c^2-2ac\cdot \cos\beta \\ c^2=a^2+b^2-2ab\cdot \cos\gamma\) It can also be rearranged to: \(\large\alpha=\arccos\left(\frac{b^2+c^2-a^2}{2bc}\right) \\ \large\beta=\arccos\left(\frac{a^2+c^2-b^2}{2ac}\right) \\ \large\gamma=\arccos\left(\frac{a^2+b^2-c^2}{2ab}\right)\) As long as all three sides or at least one side and two angles **…Read the Rest**

## Tag: sine

### Table of exact trigonometric functions

2011-10-19

Since I noticed I had to keep looking some of these up, I place them here, just for reference, gathered from around the internet. Many of these formulas can be written in different ways, but I have simplified them as much as possible. Where, \(\phi=\frac{1+\sqrt{5}}{2}=1.6180339887498948482045868\ldots\), **…Read the Rest**