The law of cosines relates the sides and angles of a triangle. \(a^2=b^2+c^2-2bc\cdot \cos\alpha \\ b^2=a^2+c^2-2ac\cdot \cos\beta \\ c^2=a^2+b^2-2ab\cdot \cos\gamma\) It can also be rearranged to: \(\large\alpha=\arccos\left(\frac{b^2+c^2-a^2}{2bc}\right) \\ \large\beta=\arccos\left(\frac{a^2+c^2-b^2}{2ac}\right) \\ \large\gamma=\arccos\left(\frac{a^2+b^2-c^2}{2ab}\right)\) As long as all three sides or at least one side and two angles **…Read the Rest**

## Tag: Law of Cosines

### Tags

Archimedean solid cosine cotangent cube cuboctahedron D12 dodecahedron Factoring Fibonacci golden ratio icosahedron icosidodecahedron Law of Cosines Law of Sines Lucas series mach 3 nested radical octahedron Penrose tiles pentagon pentagonal pyramid pentagram phi Ø Platonic solid prism pyramid Radical regular tetrahedron rocket sine SketchUp soccer ball space Square Root tangent tetrahedron triangular pyramid Trigonometry truncated cube truncated dodecahedron truncated icosahedron truncated octahedron truncated tetrahedron vertex edge angle wire frame### Donate

Keep this site running, please donate.